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Abstract
Two dimensionality reduction techniques are widely used 

to analyze data from chemical sensor arrays: Fisher’s 

Linear Discriminants Analysis (LDA) and Principal 

Components Analysis (PCA). LDA finds the directions of 

maximum discrimination in classification problems, but 

has a tendency to overfit when the ratio of training samples 

to dimensionality is low, as is commonly the case in 

chemical sensor array problems. PCA is more robust to 

overfitting but, being a variance model, fails to capture 

discriminatory information in low-variance sensors. In this 

article we propose a hybrid model, termed Principal 

Discriminants Analysis (PDA), which incorporates both 

LDA and PCA criteria by means of a regularization 

parameter. The model is characterized on a synthetic 

dataset and validated with experimental data from an 

array of 15 metal-oxide sensors exposed to five varieties of 

roasted coffee beans. Our results show that PDA provides 

higher predictive accuracy than LDA or PCA alone. In 

addition, the model is able to find a trade-off between 

discriminant- and variance-based projections according to 

where information is located in the distribution of the data.  

Index Terms—Gas sensor arrays, principal component 

analysis, linear discriminant analysis, regularization. 

INTRODUCTION
The conventional feature extraction approach in chemical 

sensor arrays consists of allowing the sensors to stabilize 

following exposure to the analytes, and using their steady 

state values as a feature vector for further processing. 

However, several authors [1],[2] have shown that 

additional information can be extracted from the sensors if 

their time-dependent evolution is included in the feature-

extraction stage. Still, feature extraction is an open 

problem, to where recent publications [3] continue to focus 

on the development of new techniques for chemical sensors 

signals. When transient information is used, the 

dimensionality of the feature space may become larger than 

the number of samples acquired for each target compound, 

resulting in a sparsely sampled feature space. Though not 

as highly dimensional as the datasets often encountered in 

image processing (e.g. face recognition [4], [5]), sensor-

transient datasets are still prone to suffer from strong 

overfitting effects. In addition, there is a significant amount 

of noise and cross-sensitivity due to thermal oscillations, 

sampling differences across experiments, humidity and 

other interferents. 

In order to facilitate the task of the classifier, the 

dimensionality of the feature space is usually reduced by 

means of a projection technique. The most common 

technique, Principal Component Analysis (PCA) [6],[7], 

finds a subspace that contains most of the variance in the 

dataset. Fisher’s Linear Discriminant Analysis (LDA) [8], 

is a supervised method that uses within-class variance 

information to build a projection. Though a powerful 

method, LDA has several drawbacks [9]. First, as a 

supervised technique, LDA has a tendency to overfitting in 

small-sample-size problems, where the dimensionality is 

higher than the number of vectors in the training set [10], 

[11].  A second, more structural problem with LDA occurs 

when the dataset has more information in the variance than 

in the mean. In this case, LDA also tends to produce poor 

results.  

This paper proposes a hybrid criterion that incorporates 

both LDA and PCA criteria by means of a regularization 

parameter. We will show that this approach not only 

reduces the over-fitting effects of LDA, but also improves 

the classification performance of either PCA or LDA by 

finding a balance between discriminatory information in 

the mean and the variance for a given dataset. 

PRINCIPAL DISCRIMINANTS ANALYSIS 
The proposed method, termed Principal Discriminant 

Analysis (PDA), is based on the eigenvalue decomposition 

of the hybrid matrix H defined by:  

Tbw SSSH 1)1( (1)

where Sw, Sb are the within- and between-scatter matrices 

[12], ST is the total data covariance, and [0,1] is a 

regularization parameter obtained through cross-validation.  

For =0 the eigenvalues of H correspond to those of the 

LDA solution, whereas for =1 PDA finds the 

conventional PCA projection. For intermediate and 

increasing values of , the LDA solution is regularized by 

gradually incorporating variance information.  An 

additional benefit of this regularization method is an 

increase in the number of non-zero eigenvalues beyond the 

upper limit of LDA (i.e., the number of classes minus one).   

Selection of the regularization parameter  is performed 

through cross-validation. Values of ~1 will indicate that 

discriminatory information is contained mostly in the 

variance of the dataset. On the other hand, ~0 will be 

characteristic of problems where most of the information is 

in the mean, and the variance of each class contains no 

discriminant information (i.e., all classes have equal 

covariance). Overall, the model will bias the solution 

towards PCA, LDA, or strike a balance between both, 

depending on where information is located in the dataset at 

hand.
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RESULTS
We have characterized the model proposed in eq. (1) on 

two independent datasets. The first dataset set was 

generated artificially in order to establish proof of concept, 

and characterize the performance of PDA against PCA and 

LDA. The second dataset consists of experimental data 

from a gas sensor array exposed to the headspace of 

different roasted coffees. The objective of these 

experiments is to determine if a regularization method such 

as PDA is able to balance the contributions of the PCA and 

LDA solutions in datasets where information is located in 

both subspaces. In what follows, results will be given as a 

function of two parameters: the regularization parameter ,

and the ratio of number of samples per class to 

dimensionality :

D

NC (2)

These parametric variations allow us to characterize the 

performance of the model as a function of the sparseness of 

the feature space, measured by the parameter , and the 

structure of the projection (e.g., mean vs. variance), 

controlled by the regularization parameter .  At low ,

(e.g. =0.3, 66 samples per class at D=200), LDA will 

tend to have poor predictive power as a result from over-

fitting.  Therefore, a sweep over  values will allow us to 

evaluate the relative sensitivity of PDA to dataset 

sparseness.  Similarly, a sweep over will allow us to 

analyze the performance of the model as it evolves from a 

PCA projection towards an LDA projection, e.g. for 

datasets with large  and information primarily in the 

means, the model should favor the LDA solution. 

Synthetic database 
The first dataset is a small-sample-set problem with three 

Gaussian classes and fixed dimensionality D=200.  We 

define an initial distribution with three overlapping classes 
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where  controls the amount of discriminatory information 

in the dataset.  For the results shown in this section, four 

experiments were performed, corresponding to values of 

={0.25, 0.5, 0.75, 1}. These “intrinsic” distributions were 

generated in a three-dimensional space.  To obtain the 

target dimensionality D=200, small Gaussian noise N(0, )

was added to the remaining 197 dimensions ( =0.1).

Model performance was estimated using a nearest-neighbor 

(1NN) classifier, and a validation set containing 600 

samples. The results are shown in Fig. 1. The intensity of 

the images in the left column denotes classification rate in 

% as a function of  and . Each case (i-iv) in Fig. 1 

represents a different value of , which controls the amount 

of discriminatory information in the mean and the variance 

of the data. The upper and bottom rows in Fig. 1 shows 

results for the dataset configuration with high ( =0.25) and 

low ( =1) class overlap, respectively. Bayes error rates, 

shown in Table 1, are estimated with a 1NN classifier 

using a separate dataset with 2000 training samples and 

2000 validation samples (on the 3-dimensional space). 

Since the 1NN error rate is bounded by twice the Bayes 

error [12], the worst-case Bayes error can then be estimated 

as half the 1NN empirical error rate.  
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Fig. 1.  (a) Classification rate in %, and (b) its standard 

deviation for the synthetic dataset. 
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Table 1.  Bayes errors for the four cases under study 

Case Bayes

Error

Case Bayes

Error

i) 0.25 0.26 iii) 0.75 0.07 

ii) 0.50 0.16 iv) 1.00 0.01 

As shown in Fig. 1, for all values of , the classification 

performance of LDA ( =0) increases with , whereas the 

performance of PCA ( =1) is lower, as could be expected. 

Note that, for any given ratio of samples/dimensions , the 

maximum performance occurs at intermediate values of .

This indicates that PDA is regularizing LDA in the small-

sample-size case, or otherwise finding a balance between 

discriminant-based and variance-based projections. 

The stability of the projection is illustrated in Fig. 1(b) in 

terms of the standard deviation of the 1NN performance as 

a function of ( , ). Note that the standard deviation is 

lower than the difference in performance between PDA and 

either PCA and LDA, particularly in the small-sample 

cases (low ). It is also interesting to note that the standard 

deviation of the classifications decreases with the Bayes 

error.

These results indicate that PDA is able to find an improved 

projection as a balance between the PCA and LDA 

solutions. These results can be explained as follows. First, 

since the synthetic dataset contains significant 

discriminatory information in the covariance of the data, 

the second term in equation (1)  allows PDA to capture 

some of this information.  Second, LDA aligns the 

discriminant planes in the directions of the sub-space 

defined by the class-conditional means, while minimizing 

the within-class covariance of the projections. Overall, 

there exists a trade-off between mean and variance 

information, such that combination of the two solutions can 

provide better discrimination than either solution alone. 

Gas sensor array dataset 
The proposed PDA model was also validated on 

experimental data from a sensor-array system developed at 

NC State University [13]. The sensor array contained 

twelve metal-oxide sensors from Capteur (Dodcot, UK) 

(sensors AA20, AA25, CT05, CT23, G06, G07, CT03, 

CT04, CT22, LG09, LG10 and LG21) and three metal-

oxide sensors  from Figaro Engineering Inc. (Osaka, Japan) 

(sensors TGS2600, TGS2610 and TGS2620). The sensor 

array was exposed to five coffee beans varieties, namely 

Sulawesy, Kenya, Arabian, Sumatra and Colombia. Coffee 

beans samples were held in 30ml bottles, and the dynamic 

headspace was extracted with a constant flow of 0.1 lpm. 

The sampling cycle consisted of a wash cycle of 30 

seconds, a reference cycle of 180 seconds, a sample cycle 

of 60 seconds and a final wash cycle of 10 seconds. A total 

of 225 samples were acquired over a period of five days, 

45 samples for each variety of coffee. An example of the 

transient response of the sensor array is shown in Fig. 3(a).  

These transient responses were acquired at 10Hz. A 30-

dimensional feature vector was obtained by selecting two 

samples (t=16,56s) from the transient waveform of each 

sensor. A PCA scatterplot of the data is shown in Fig. 3(b).  

From the figure, it is noticeable the high amount of drift in 

the data; the main clusters are not related with class 

information but rather with different days of acquisition. 

These first two projections contain 75% of the total 

variance in the dataset, which indicates that discriminatory 

information is contained in low-variance channels.  

The procedure for validating PDA is similar to the one 

described earlier. The number of training samples per class 

was increased from 23 ( =0.8) to 43 ( =1.4), and the 

performance of PDA was estimated for different values of 

.  For each given training-set size, the rest of available 

samples were used as a validation set for the 1NN 

classifier. Results of the classification performance on the 

validation set are shown in Fig. 2. 

A final experiment was also performed by splitting the data 

into a training set (50% of the data), a validation set (25%), 

and a test set (25%).  The dimensionality of the data was 

set to D=45. The scatter matrices in eq. (1) were obtained 

from the training set, whereas the regularization parameter 

was obtained from the performance of the 1NN classifier 

on the validation set. The test set was finally employed to 

estimate 1NN performance on the final PDA projection. 

PDA performed with a 64% classification rate on the test 

set, whereas LDA and PCA operated at 45% and 25%, 

respectively.  In contrast with the synthetic case, the 

variance of the data does not provide discriminatory 

information, since the performance at =1 is close to that 

of a random classifier. Despite the lack of discriminatory 

information in the variance, PDA is nonetheless able to 

find an intermediate value of  with higher performance 

than LDA. Therefore, in this case PDA works as a 

regularizer for LDA rather than as a mechanism to 

incorporate variance information. 
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Fig. 2.  (a) Classification rate at higher training set size 

( =1.37, 41 samples per class) vs. . (b) Classification 

rate on validation data as a function of  and .
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Fig. 3.  (a) Example of the sensor-array transient response.  (b) PCA scatterplot for the coffee dataset. 

CONCLUSIONS
This paper has presented a novel technique for 

dimensionality reduction that provides a balance between 

discriminant-based and variance-based projections. This 

balance is established by regularizing the Fisher’s 

Discriminants with the PCA solution. Selection of the 

regularization parameter through cross-validation allows 

the technique to be tuned to the specific distribution of 

information in a given dataset. The model has been 

characterized on a synthetic dataset, and validated on 

experimental data from an array of gas sensors improving 

individual performance of both variance-based and 

discriminant-based projections. The proposed method 

serves dual purpose. First, PDA prevents the Fisher’s 

Discriminant projection from overfitting the training data 

by regularizing with the pooled covariance matrix. Second, 

and disregarding rank-deficiency issues, the model 

successfully balances mean and variance information 

according to the distribution of information in the data. 

Both scenarios are common in sensor array systems, where 

experimental data is usually limited and sensor signals are 

prone to suffer from strong cross-selectivity to interferents 

such as temperature and humidity.  
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