What!?!

No Rubine Features?: Using Geometric-based Features to

Produce Normalized Confidence Values for Sketch Recognition

Brandon Paulson’, Pankaj Rajanf, Pedro Davalos?, Ricardo Gutierrez-Osuna?, Tracy Hammond!
Sketch Recognition Lab'
Pattern Recognition and Intelligent Sensor Machines Lab?
Spacecraft Technology Center?
Texas A&M University
3112 TAMU
College Station, TX 77843 USA
{bpaulson, pankaj, p0d9861, rgutier, hammond }@cs.tamu.edu

Abstract

As pen-based interfaces become more popular in to-
day’s applications, the need for algorithms to accu-
rately recognize hand-drawn sketches and shapes has
increased. In many cases, complex shapes can be
constructed hierarchically as a combination of smaller
primitive shapes meeting certain geometric constraints.
However, in order to construct higher level shapes, it is
imperative to accurately recognize the lower-level prim-
itives. Two approaches have become widespread in the
sketch recognition field for recognizing lower-level prim-
itives: gesture-based recognition and geometric-based
recognition. Qur goal is to use a hybrid approach
that combines features from both traditional gesture-
based recognition systems and geometric-based recogni-
tion systems. In this paper, we show that we can pro-
duce a system with high recognition rates while provid-
ing the added benefit of being able to produce normal-
ized confidence values for alternative interpretations;
something most geometric-based recognizers lack. More
significantly, results from feature subset selection indi-
cate that geometric features aid the recognition process
more than gesture-based features when given naturally
sketched data.

1. Introduction

Hardware supporting pen-based input has become
popular in recent years as Tablet PCs, SmartBoards,
and touch screens are becoming common modes of in-
put for many applications. Sketches are used in a
variety of domains to help convey ideas and designs.

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany

15 September 2008
Editors: Beryl Plimmer & Tracy Hammond

Computer-aided design (CAD) tools have been created
to allow the visualization of abstract ideas; however,
traditional CAD applications use less than intuitive in-
terfaces. Sketching is a very natural choice as an al-
ternative to the multi-tool selection paradigm. Many
tools have been created which allow sketching to be
easily incorporated into user interfaces [12, 16]. How-
ever, in order for sketching to be an effective means of
input, we must develop recognizers that can accurately
determine the intention of a sketcher.

Two approaches have become standard to solving
the sketch recognition problem. The first approach
treats input sketches simply as two-dimensional ges-
tures [1, 15, 18]. These gesture-based recognition tech-
niques typically focus on how a sketch was drawn rather
than on what the final sketch actually looks like. The
typical goal of these systems is to take an input stroke
(a sampling of points in the form of x, y, and time
value) and classify each one into a set of pre-defined
gestures. This approach has the benefit of using mathe-
matically sound classifiers which produce fast classifica-
tions along with normalized confidence values, but has
the disadvantage of using feature sets which are user-
dependent and require individual training by each user
to give good recognition results. Furthermore, many
of these gesture-based features produce systems which
are very sensitive to changes in scale and rotation.

The second approach has been to describe shapes
geometrically, focusing on what the sketch looks like
and less on how it was actually drawn [14, 17, 19]. Es-
sentially, these geometric-based techniques are meant
to take a single stroke as input and classify it as one of
the predefined geometric primitives. These techniques
are geometric in nature because they compare a stroke

57

—

Ellipse 535%
Circle 45%

Figure 1. Example scenario in which higher-
level context can disambiguate a lower-level
interpretation. In this example, the high-level
recognizer may realize that the ambiguous
stroke is more likely to be a circle (which rep-
resents a wheel in this domain) than an el-
lipse because of context.

to an ideal representation of each primitive using for-
mulas based on geometry. Primitives can then be com-
bined hierarchically to form more complex shapes us-
ing specialized grammars [7]. Since the geometric tests
used by these systems focus more on what the sketch
looks like, these recognizers are typically more user-
and style-independent. This also means that no indi-
vidual (per user) training is necessary; the only train-
ing required is that which is necessary to determine
numerous geometric thresholds. The disadvantage of
such a system is that geometric-based recognizers typi-
cally use numerous thresholds and heuristic hierarchies
which are difficult to analyze and optimize in a system-
atic fashion. Inferences about generalization are hard
to determine because classification is not statistical.
Furthermore, the use of multiple error measures on a
per shape basis makes ranking alternative interpreta-
tions difficult [14].

Ranking alternative interpretations with a normal-
ized confidence value can be important in aiding a
higher-level recognition system, which often has access
to context that can help resolve ambiguity in a lower-
level interpretation [3, 6]. For example, imagine that a
user draws a shape and the low-level recognizer returns
a circle interpretation with an ellipse listed as an alter-
native interpretation. In addition, the low-level recog-
nizer can also supply confidence values: 55% chance
of an ellipse, 45% chance of a circle. The higher-level
recognizer may now be more likely to choose the cir-
cle interpretation over the ellipse interpretation given
that these confidence values are so close, if context in-
dicates that an circle is a more likely interpretation.
An example of this is shown in Figure 1.

Our initial goal for this work was to find a way to
combine these gesture-based and geometric-based ap-

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany

15 September 2008
Editors: Beryl Plimmer & Tracy Hammond

proaches in such a way as to take advantage of the pos-
itive aspects of each (accurate classification, user inde-
pendent, mathematically sound, ability to produce nor-
malized confidence values, etc.) while avoiding many
of the disadvantages. During this process, we discov-
ered that gesture-based features were less significant in
aiding recognition on freely sketched data. This discov-
ery, along with the production of normalized confidence
values, is our main contribution.

As is the case in many previous works [14, 17, 19],
we focused simply on classifying low-level primitive
shapes. We have chosen to classify single strokes into
one of nine different shape classes (arc, line, curve, cir-
cle, ellipse, helix, spiral, polyline, and complex). This
is the shape set used in a previous geometric-based rec-
ognizer, PaleoSketch [14]. In this paper we show that
combining the gesture-based features from Rubine [15]
with geometric-based features and using a statistical
classifier can yield accurate recognition results while
producing normalized confidence values. We also per-
form feature subset selection to determine what fea-
tures are the most significant for recognition. Our find-
ings indicate that geometric-based features contribute
more significantly to the recognition of naturally drawn
sketch data than gesture-based features.

2 Previous Work
2.1 Gesture-based Recognition

In 1991, Dean Rubine introduced one of the
first pen-based input gesture recognition systems,
GRANDMA [15]. This toolkit allowed users to specify
single stroke gestures that could be trained and learned
through a simple linear classifier. Rubine proposed
thirteen features which could be used to classify sim-
ple gestures with an accuracy of 98% on a fifteen-class
gesture set when trained with at least fifteen examples
per class.

Rubine’s work was extended by [1]. In this paper,
Long et al. added nine new features to Rubine’s ex-
isting set. They performed multi-dimensional scaling
to identify correlated features and ultimately found
an optimal subset that contained eleven of Rubine’s
original thirteen features along with six of their own.
Both of these works proved to be helpful in recognizing
two-dimensional gestures, but when applied to natural
sketch recognition problems, the accuracy of these ap-
proaches is not optimal.

The nature of the feature sets used by these recog-
nizers requires that gestures be drawn the same way
and to the same scale every time they are drawn. For
example, a clockwise, circular gesture would not be the

58

(define shape Pendulum ...
(components
(Circle mass)
(Line arm))
(constraints
(concentric arm.pl mass) ...)

) mass

arm

Figure 2. Example of a higher-level shape
(pendulum) being constructed from lower-
level primitives (line, circle).

same as a counter-clockwise, circular gesture. When
treating sketched shapes as gestures these approaches
do not perform well because they put constraints on
how users must draw. Our goal is to be able to create
recognition systems which are user-independent and
allow users to draw as they would naturally, without
having to worry about issues such as where to start a
stroke or which direction to draw certain shapes. This
is typically referred to as “free” or “natural” sketch
recognition [8].

2.2 Geometric-based Recognition

Because of the drawing constraints imposed by
gesture-based classifiers, the most recent shift in sketch
recognition has been toward a geometric approach,
which puts virtually no drawing constraints on the
user. Essentially, shape grammars such as LADDER
[7] can be used to define higher level shapes as a com-
bination of lower level primitive shapes meeting cer-
tain geometric constraints. Figure 2 gives an exam-
ple of how higher-level shapes can be constructed from
lower-level primitives.

In order for these higher-level recognition schemes
to be effective, it is important that the low-level primi-
tive shapes are accurately recognized. Many geometric-
based recognizers have been developed to recognize
low-level primitive shapes [14, 17, 19]. Unlike gesture-
based techniques, these recognizers do not use statisti-
cal classifiers. Instead, they focus on determining the
error between a sketched shape and its ideal version
using a series of geometric tests and formulas. Some
recognizers focus on developing a universal error met-
ric such as the feature area error metric [19]. How-
ever, universal error metrics can be hard to describe
and compute for more complex primitive shapes such
as spirals and helixes.

In order to support more primitives, some recogniz-
ers use different error metrics for each primitive [14].
These recognizers then rely upon heuristic hierarchies

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany

15 September 2008
Editors: Beryl Plimmer & Tracy Hammond

and numerous thresholds to order shape interpreta-
tions. Such an approach makes it hard to generalize
and prove a recognizer’s success for future sketches. It
also makes producing normalized confidence values dif-
ficult (the biggest downfall of such an approach).

3. Features

As mentioned before, our goal is to combine gesture-
based and geometric-based approaches in such a way
as to take advantage of the benefits of both techniques.
We will use a statistical classifier - namely a quadratic
classifier [5] - that uses a feature set containing both
gestural and geometric features. Our hypothesis is that
this approach will lend itself more naturally to system-
atic optimization than using heuristic hierarchies, will
maintain user independence because of the addition of
geometric features, and will still enable us to return
multiple, ranked interpretations with normalized con-
fidence values.

Our feature set initially contained 44 total features.
The first 31 features came from geometric tests de-
scribed in [14]. The remaining 13 features are the clas-
sical gesture-based features used by Rubine [15]. The
descriptions of each of these features are beyond the
scope of this paper, so the interested reader is referred
to [14, 15]. Table 1 gives a list of the features we used.

4. Data

To perform our tests, we used a dataset consisting of
1800 total sketch examples - the same dataset from [14].
Each example consists of a single stroke and is labeled
with the intention of the original sketcher. A stroke is
defined as the set of points (x-coordinate, y-coordinate,
and time stamp) sampled between pen-down and pen-
up events. The data samples came from 20 different
users. Each user provided 90 samples (10 of each shape
class). Figure 3 shows some examples from the dataset.

For our experiments we split the data set into
two halves. The first half consisted of 900 examples
sketched by 10 distinct users. The second half con-
sisted of 900 examples from 10 different users. Rather
than use a random 50/50 split of the overall data, we
chose to split based on user to more accurately reflect
how a sketch system would be used (i.e. the classifier
is trained with data offline and then new users interact
with the system without providing their own training
data). This testing procedure allows us to determine
the extent to which our algorithm is user-independent.
The first half of the data was used to perform feature
subset selection and training while the second set was
left untouched until the validation of our final model.

59

12. Curve least
squares error (90%)

1. Endpoint to stroke
length ratio (100%)

23. Spiral fit: avg.
radius/bounding box
radius ratio (60%)

34. Length of bounding
box diagonal (20%)

2. NDDE (90%) 13. Polyline fit: # of

sub-strokes (70%)

24. Spiral fit: center
closeness error (70%)

35. Angle of the
bounding box diagonal

(40%)

3. DCR (90%) 14. Polyline fit:
percent of sub-strokes

pass line test (50%)

25. Spiral fit: max
distance between
consecutive centers (20%)

36. Distance between
endpoints (10%)

4. Slope of the direction
graph (20%)

15. Polyline feature
area error (80%)

26. Spiral fit: average
radius estimate (10%)

37. Cosine of angle
between endpoints (0%)

5. Maximum curvature 16. Polyline least squares

27. Spiral fit: radius test

38. Sine of angle between

(40%) error (30%) passed (1.0 or 0.0) (40%) | endpoints (10%)
6. Average curvature 17. Ellipse fit: major axis | 28. Complex fit: # of | 39. Total stroke length
(30%) length estimate (20%) sub-fits (60%) (20%)

7. # of corners (30%) 18. Ellipse fit: minor axis

length estimate (30%)

29. Complex fit: # of
non-polyline
primitives (50%)

40. Total rotation
(100%)

8. Line least squares
error (0%)

19. Ellipse feature area
error (10%)

30. Complex fit:
percent of sub-fits
that are lines (90%)

41. Absolute rotation
(10%)

20. Circle fit: radius
estimate (30%)

9. Line feature area error

(40%)

31. Complex score /
rank (50%)

42. Rotation squared
(10%)

10. Arc fit: radius
estimate (0%)

21. Circle fit: major
axis to minor axis
ratio (80%)

32. Cosine of the starting
angle (30%)

43. Maximum speed

(20%)

22. Circle feature area
error (0%)

11. Arc feature area error

(20%)

33. Sine of the starting
angle (10%)

44. Total time (30%)

Table 1. Features used by our recognizer. Implementation details for features 1-31 can be found in
[14]. Details for features 32-44 can be found in [15]. Bold features are those chosen as the optimal
subset through feature subset selection. Percentage values indicate how often a feature was chosen
as optimal through various folds of subset selection.

5. Results

Our goal was to determine whether or not we
could use a statistical classifier to classify single-stroke
sketched primitives using a combination of gesture-
based and geometric-based features. In addition, we
wanted to determine if our approach produced classi-
fication rates that are comparable to the current best
low-level system, PaleoSketch. In order to compare our
approach directly to the PaleoSketch system, we have
presented our results using the same 50/50 user split
from [14]. However, we also wanted to determine if our
final classifier was robust to other splits. Therefore, we
have also presented results based on 25 folds of cross-
validation where we combined the training and testing
data into a single set and randomly selected 10 users for
training and 10 users for testing. Table 2 shows the re-
sults of using the full feature set along with a quadratic

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany

15 September 2008
Editors: Beryl Plimmer & Tracy Hammond

classifier for each of the cases just mentioned. In this
table, we also present the improved accuracy achieved
through feature subset selection. Because of singulari-
ties in the data, the covariance matrix was regularized
by adding a small value (0.001) to its diagonal [4].

As Table 2 shows, the full feature set alone did not
provide the same accuracy reported in [14]. We can
also see that the split used by the original PaleoSketch
system is not favorable to the quadratic classifier using
the full feature set. Fortunately, the quadratic classi-
fier can be optimized by removing features which con-
tribute negatively to recognition.

5.1. Feature Subset Selection
To determine relevant features, we employed a

greedy, sequential forward selection (SFS) technique
to perform feature subset selection [2]. The subset se-

60

